Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 903
Filtrar
1.
Front Endocrinol (Lausanne) ; 13: 941166, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903276

RESUMO

Human stem cell-derived organoid culture enables the in vitro analysis of the cellular function in three-dimensional aggregates mimicking native organs, and also provides a valuable source of specific cell types in the human body. We previously established organoid models of the hypothalamic-pituitary (HP) complex using human pluripotent stem cells. Although the models are suitable for investigating developmental and functional HP interactions, we consider that isolated pituitary cells are also useful for basic and translational research on the pituitary gland, such as stem cell biology and regenerative medicine. To develop a method for the purification of pituitary cells in HP organoids, we performed surface marker profiling of organoid cells derived from human induced pluripotent stem cells (iPSCs). Screening of 332 human cell surface markers and a subsequent immunohistochemical analysis identified epithelial cell adhesion molecule (EpCAM) as a surface marker of anterior pituitary cells, as well as their ectodermal precursors. EpCAM was not expressed on hypothalamic lineages; thus, anterior pituitary cells were successfully enriched by magnetic separation of EpCAM+ cells from iPSC-derived HP organoids. The enriched pituitary population contained functional corticotrophs and their progenitors; the former responded normally to a corticotropin-releasing hormone stimulus. Our findings would extend the applicability of organoid culture as a novel source of human anterior pituitary cells, including stem/progenitor cells and their endocrine descendants.


Assuntos
Células-Tronco Pluripotentes Induzidas , Hormônios Adeno-Hipofisários , Células-Tronco Pluripotentes , Biomarcadores/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Humanos , Organoides/metabolismo , Hipófise/metabolismo , Hormônios Adeno-Hipofisários/metabolismo
2.
J Neuroendocrinol ; 33(11): e13053, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34734454

RESUMO

Anterior pituitary folliculostellate (FS) cells, first described almost 50 years ago, have a wide range of functions with respect to supporting and coordinating endocrine cell function, in particular through paracrine and gap junction-mediated signalling. Our previous studies identified the morphological organisation of FS cells, which mediates coordinated calcium activity throughout the homotypic FS network and allows signalling across the whole pituitary gland. It is also clear that FS cells can modify endocrine output and feedback on pituitary axes over a range of timescales. Recently, several studies have defined FS cells as a source of anterior pituitary endocrine cell renewal, which has resulted in a renaming of FS cells as "Sox2+ve stem cells". Here, we highlight the broader potential of the FS cell population in fine-tuning and coordinating pituitary axes function. In addition, we identify a need for: the definition of the possible subtypes of FS cell and their relationship with the stem cell population; the potential role of FS cells in pulsatile hormone secretion and coordination of heterotypic cell networks; and the roles that FS cells may play in both early-life programming of pituitary axes and in memory, or anticipation, of demand. Further studies of FS cells may demonstrate the fundamental importance of this cell type and its potential as a therapeutic target to correct pituitary gland dysfunction, one of which is stem cell therapy. Clearly, a thorough understanding of all of these interactions and relationships of FS and endocrine cells is required whatever therapeutic use is suggested by their various roles.


Assuntos
Células Endócrinas , Adeno-Hipófise , Hormônios Adeno-Hipofisários , Células Cultivadas , Junções Comunicantes/metabolismo , Hipófise , Adeno-Hipófise/metabolismo , Hormônios Adeno-Hipofisários/metabolismo
3.
Acta Neuropathol Commun ; 9(1): 181, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34758873

RESUMO

Pituitary neuroendocrine tumors (PitNETs) are common, generally benign tumors with complex clinical characteristics related to hormone hypersecretion and/or growing sellar tumor mass. PitNETs can be classified based on the expression pattern of anterior pituitary hormones and three main transcriptions factors (TF), SF1, PIT1 and TPIT that regulate differentiation of adenohypophysial cells. Here, we have extended this classification based on the global transcriptomics landscape using tumor tissue from a well-defined cohort comprising 51 PitNETs of different clinical and histological types. The molecular profiles were compared with current classification schemes based on immunohistochemistry. Our results identified three main clusters of PitNETs that were aligned with the main pituitary TFs expression patterns. Our analyses enabled further identification of specific genes and expression patterns, including both known and unknown genes, that could distinguish the three different classes of PitNETs. We conclude that the current classification of PitNETs based on the expression of SF1, PIT1 and TPIT reflects three distinct subtypes of PitNETs with different underlying biology and partly independent from the expression of corresponding hormones. The transcriptomic analysis reveals several potentially targetable tumor-driving genes with previously unknown role in pituitary tumorigenesis.


Assuntos
Adenoma/genética , Estudo de Associação Genômica Ampla , Tumores Neuroendócrinos/genética , Neoplasias Hipofisárias/genética , Adenoma/metabolismo , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Tumores Neuroendócrinos/metabolismo , Adeno-Hipófise/metabolismo , Hormônios Adeno-Hipofisários/metabolismo , Neoplasias Hipofisárias/metabolismo , Transcriptoma
4.
Front Endocrinol (Lausanne) ; 11: 605111, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33505357

RESUMO

Melatonin is a key hormone involved in the photoperiodic signaling pathway. In both teleosts and mammals, melatonin produced in the pineal gland at night is released into the blood and cerebrospinal fluid, providing rhythmic information to the whole organism. Melatonin acts via specific receptors, allowing the synchronization of daily and annual physiological rhythms to environmental conditions. The pituitary gland, which produces several hormones involved in a variety of physiological processes such as growth, metabolism, stress and reproduction, is an important target of melatonin. Melatonin modulates pituitary cellular activities, adjusting the synthesis and release of the different pituitary hormones to the functional demands, which changes during the day, seasons and life stages. It is, however, not always clear whether melatonin acts directly or indirectly on the pituitary. Indeed, melatonin also acts both upstream, on brain centers that control the pituitary hormone production and release, as well as downstream, on the tissues targeted by the pituitary hormones, which provide positive and negative feedback to the pituitary gland. In this review, we describe the known pathways through which melatonin modulates anterior pituitary hormonal production, distinguishing indirect effects mediated by brain centers from direct effects on the anterior pituitary. We also highlight similarities and differences between teleosts and mammals, drawing attention to knowledge gaps, and suggesting aims for future research.


Assuntos
Antioxidantes/farmacologia , Plasticidade Celular , Melatonina/farmacologia , Adeno-Hipófise/efeitos dos fármacos , Hormônios Adeno-Hipofisários/metabolismo , Animais , Peixes , Mamíferos
5.
PLoS One ; 14(9): e0222340, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31509580

RESUMO

Growth hormone (GH) is an important hormone released by the pituitary gland that plays a key role in the growth and development of organisms. In our study, TargetScan analysis and the dual luciferase reporter assays were used to predict and screen for miRNAs that might act on the rat Gh1 gene, and we identified miR-543-5p. Then, the GH3 cell line and the primary rat pituitary cells were transfected with miRNA mimic, inhibitor, and siRNA. We detected the Gh1 gene expression and the GH secretion by real-time PCR and ELISAs, respectively, to verify the regulatory effect of miR-543-5p on GH secretion. The results showed that miR-543-5p can inhibit Gh1 mRNA expression and reduce GH secretion. MiR-543-5p inhibitor upregulated Gh1 mRNA expression and increased GH secretion compared with the negative control. In summary, miR-543-5p downregulates Gh1 expression, resulting in a decrease in GH synthesis and secretion, which demonstrates the important role of miRNAs in regulating GH and animal growth and development.


Assuntos
Hormônio do Crescimento/genética , MicroRNAs/genética , Hormônios Adeno-Hipofisários/genética , Regiões 3' não Traduzidas/genética , Animais , Linhagem Celular , Expressão Gênica , Regulação da Expressão Gênica/genética , Hormônio do Crescimento/metabolismo , Masculino , Hipófise/metabolismo , Adeno-Hipófise/metabolismo , Hormônios Adeno-Hipofisários/metabolismo , Cultura Primária de Células , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Transfecção
7.
Thyroid ; 29(4): 502-512, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30747053

RESUMO

BACKGROUND: The secretion of pituitary hormones oscillates throughout the 24-hour period, indicating that circadian clock-mediated mechanisms regulate this process in the gland. Additionally, pituitary hormone synthesis has been shown to be altered in hypo- and hyperthyroidism. Although thyroid hormones can modulate the other peripheral clocks, the interaction between thyroid hormone levels and circadian clock gene expression in the anterior pituitary has yet to be elucidated. METHODS: Male Wistar rats were divided into three groups: control, hypothyroid, and hyperthyroid. Following the experimental procedures, animals were euthanized every three hours over the course of a 24-hour period. The anterior pituitary glands were excised and processed for mRNA expression analysis by quantitative reverse transcriptase polymerase chain reaction. One- and two-way analysis of variance as well as cosinor analysis were used to evaluate the time-of-day-dependent differential expression for each gene in each experimental group and their interactions. RESULTS: Hyperthyroidism increased the mRNA expression of core clock genes and thyrotrophic embryonic factor (Tef), as well as the mesor and amplitude of brain and muscle Arnt-like protein-1 (Bmal1) and the mesor of nuclear receptor subfamily 1 (Nr1d1) group D member 1, when compared to euthyroid animals. Hypothyroidism disrupted the circadian expression pattern of Bmal1 and period circadian regulator 2 (Per2) and decreased the mesor of Nr1d1 and Tef. Furthermore, it was observed that the pituitary content of Dio2 mRNA was unaltered in hyperthyroidism but substantially elevated in hypothyroidism during the light phase. The upregulated expression was associated with an increased mesor and amplitude, along with an advanced acrophase. The gene expression of all the pituitary hormones was found to be altered in hypo- and hyperthyroidism. Moreover, prolactin (Prl) and luteinizing hormone beta subunit (Lhb) displayed circadian expression patterns in the control group, which were disrupted in both the hypo- and hyperthyroid states. CONCLUSION: Taken together, the data demonstrate that hypo- and hyperthyroidism alter circadian clock gene expression in the anterior pituitary. This suggests that triiodothyronine plays an important role in the regulation of pituitary gland homeostasis, which could ultimately influence the rhythmic synthesis and/or secretion of all the anterior pituitary hormones.


Assuntos
Ritmo Circadiano , Hipertireoidismo/metabolismo , Hipotireoidismo/metabolismo , Adeno-Hipófise/metabolismo , Hormônios Adeno-Hipofisários/metabolismo , RNA Mensageiro/metabolismo , Animais , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Hipertireoidismo/genética , Hipertireoidismo/fisiopatologia , Hipotireoidismo/genética , Hipotireoidismo/fisiopatologia , Masculino , Adeno-Hipófise/fisiopatologia , Hormônios Adeno-Hipofisários/genética , RNA Mensageiro/genética , Ratos Wistar , Tireotropina/sangue , Fatores de Tempo , Transcriptoma , Tri-Iodotironina/sangue
8.
J Clin Endocrinol Metab ; 104(7): 2473-2489, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30020466

RESUMO

CONTEXT: Silent pituitary adenomas are anterior pituitary tumors with hormone synthesis but without signs or symptoms of hormone hypersecretion. They have been increasingly recognized and represent challenging diagnostic issues. EVIDENCE ACQUISITION: A comprehensive literature search was performed using MEDLINE and EMBASE databases from January 2000 to March 2018 with the following key words: (i) pituitary adenoma/tumor and nonfunctioning; or (ii) pituitary adenoma/tumor and silent. All titles and abstracts of the retrieved articles were reviewed, and recent advances in the field of silent pituitary adenomas were summarized. EVIDENCE SYNTHESIS: The clinical and biochemical picture of pituitary adenomas reflects a continuum between functional and silent adenomas. Although some adenomas are truly silent, others will show some evidence of biochemical hypersecretion or could have subtle clinical signs and, therefore, can be referred to as clinically silent or "whispering" adenomas. Silent tumors seem to be more aggressive than their secreting counterparts, with a greater recurrence rate. Transcription factors for pituitary cell lineages have been introduced into the 2017 World Health Organization guidelines: steroidogenic factor 1 staining for gonadotroph lineage; PIT1 (pituitary-specific positive transcription factor 1) for growth hormone, prolactin, and TSH lineage, and TPIT for the corticotroph lineage. Prospective studies applying these criteria will establish the value of the new classification. CONCLUSIONS: A concise review of the clinical and pathological aspects of silent pituitary adenomas was conducted in view of the new World Health Organization classification of pituitary adenomas. New classifications, novel prognostics markers, and emerging imaging and therapeutic approaches need to be evaluated to better serve this unique group of patients.


Assuntos
Biomarcadores Tumorais/sangue , Recidiva Local de Neoplasia/epidemiologia , Adeno-Hipófise/patologia , Hormônios Adeno-Hipofisários/metabolismo , Neoplasias Hipofisárias/diagnóstico , Quimioterapia Adjuvante/métodos , Humanos , Angiografia por Ressonância Magnética , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/prevenção & controle , Adeno-Hipófise/diagnóstico por imagem , Adeno-Hipófise/cirurgia , Hormônios Adeno-Hipofisários/sangue , Neoplasias Hipofisárias/sangue , Neoplasias Hipofisárias/patologia , Neoplasias Hipofisárias/terapia , Prognóstico
9.
Endocrinology ; 159(10): 3524-3535, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30020429

RESUMO

More than 60 years ago, Geoffrey Harris described his "neurohumoral theory," in which the regulation of pituitary hormone secretion was a "simple" hierarchal relationship, with the hypothalamus as the controller. In models based on this theory, the electrical activity of hypothalamic neurons determines the release of hypophysiotropic hormones into the portal circulation, and the pituitary simply responds with secretion of a pulse of hormone into the bloodstream. The development of methodologies allowing the monitoring of the activities of members of the hypothalamic-vascular-pituitary unit is increasingly allowing dissection of the mechanisms generating hypothalamic and pituitary pulses. These have revealed that whereas hypothalamic input is required, its role as a driver of pulsatile pituitary hormone secretion varies between pituitary axes. The organization of pituitary cells has a key role in the modification of their response to hypophysiotropic factors that can lead to a memory of previous demand and enhanced function. Feedback can lead to oscillatory hormone output that is independent of pulses of hypophysiotropic factors and instead, results from the temporal relationship between pituitary output and target organ response. Thus, the mechanisms underlying the generation of pulses cannot be generalized, and the circularity of feedforward and feedback interactions must be considered to understand both normal physiological function and pathology. We describe some examples of the clinical implications of recognizing the importance of the pituitary and target organs in pulse generation and suggest avenues for future research in both the short and long term.


Assuntos
Hipotálamo/metabolismo , Neurônios/metabolismo , Hipófise/metabolismo , Hormônios Adeno-Hipofisários/metabolismo , Animais , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Modelos Biológicos , Sistema Hipófise-Suprarrenal/metabolismo
10.
Gynecol Endocrinol ; 34(1): 36-39, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28649890

RESUMO

Ghrelin, an endoggenous for the growth hormone secretagogue receptor, has been shown to participate in the regulation of energy homeostasis and pituitary hormone secretion. Obestatin, encoded by the same gene as ghrelin, is described as a physiological opponent of ghrelin. Ghrelin and obestatin are altered in polycystic ovary syndrome (PCOS), which is characterized by insulin resistance and pituitary hormone secretion disorder. The aim of this study was to evaluate ghrelin/obestatin imbalance in relation to insulin resistance and pituitary hormone in adolescence with PCOS. This restrospective case-control study included 33 adolescence with PCOS and 38 control adolescence. Ghrelin and obestatin concentrations in serum were determined by RIA, and the serum fasting glucose and Insulin were determined by the glucose oxidase color method and INS-EASIA. The serum LH and FSH were measured by highly specific hemiluminescence immunoassays. We found that the serum ghrelin levels and ghrelin/obestatin ratio were significant lower in PCOS group than in control group, and the serum obestatin levels were significant higher in PCOS group than in control group. The ghrelin/obestatin ratios were negatively correlation with LH/FSH ratio and insulin resistant index in PCOS group. The findings of this study suggest that ghrelin/obestatin imbalance may play a role in pathogenesis of adolescent PCOS.


Assuntos
Grelina/sangue , Síndrome do Ovário Policístico/sangue , Anormalidades Múltiplas , Adolescente , Glicemia/análise , Estudos de Casos e Controles , Metabolismo Energético , Facies , Jejum , Feminino , Hormônio Foliculoestimulante/sangue , Homeostase , Humanos , Hipotireoidismo , Insulina/sangue , Resistência à Insulina , Hormônio Luteinizante/sangue , Hormônios Adeno-Hipofisários/deficiência , Hormônios Adeno-Hipofisários/metabolismo , Síndrome do Ovário Policístico/fisiopatologia , Estudos Retrospectivos , Fator de Transcrição Pit-1/deficiência , Fator de Transcrição Pit-1/metabolismo
11.
Mol Cell Endocrinol ; 463: 49-64, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-28684290

RESUMO

The functions of anterior pituitary cells are controlled by two major groups of hypothalamic and intrapituitary ligands: one exclusively acts on G protein-coupled receptors and the other activates both G protein-coupled receptors and ligand-gated receptor channels. The second group of ligands operates as neurotransmitters in neuronal cells and their receptors are termed as neurotransmitter receptors. Most information about pituitary neurotransmitter receptors was obtained from secretory studies, RT-PCR analyses of mRNA expression and immunohistochemical and biochemical analyses, all of which were performed using a mixed population of pituitary cells. However, recent electrophysiological and imaging experiments have characterized γ-aminobutyric acid-, acetylcholine-, and ATP-activated receptors and channels in single pituitary cell types, expanding this picture and revealing surprising differences in their expression between subtypes of secretory cells and between native and immortalized pituitary cells. The main focus of this review is on the electrophysiological and pharmacological properties of these receptors and their roles in calcium signaling and calcium-controlled hormone secretion.


Assuntos
Hormônios Adeno-Hipofisários/metabolismo , Receptores de Neurotransmissores/metabolismo , Transdução de Sinais , Animais , Linhagem da Célula , Humanos , Ligantes
12.
PLoS One ; 12(7): e0182495, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28759642

RESUMO

Folliculostellate cell gap junctions establish a network for the transmission of information within the anterior pituitary. Connexins make up gap junction channels. Changes in connexin (Cx) turnover modify gap junction-mediated intercellular communication. We have reported that cytokines and hormones influence Cx43 turnover and coupling in folliculostellate cells and in the folliculostellate cell line TtT/GF. In addition, the expression of different connexins alters intercellular communication and connexins may have functions besides cell coupling. Here we assessed the expression, turnover and subcellular localization of Cx46 and Cx50 in the anterior pituitary and TtT/GF cells. Then, we assessed the impact of various natural (lactation, annual reproductive cycle, bFGF) and pathological (autoimmune orchitis, diabetes/obesity) conditions associated with altered anterior pituitary hormone secretion on Cx46 and Cx50. Anterior pituitary Cx46 and Cx50 expression and subcellular distribution were cell-dependent. Cx46 was expressed by folliculostellate, TtT/GF and endocrine cells. In the cytoplasm, Cx46 was chiefly associated with lysosomes. Variously sized Cx46 molecules were recovered exclusively in the TtT/GF cell nuclear fraction. In the nucleus, Cx46 co-localized with Nopp-140, a nucleolar factor involved in rRNA processing. Neither cytoplasmic nor nuclear Cx46 and Cx43 co-localized. Cx50 localized to folliculostellate and TtT/GF cells, and to the walls of blood capillaries, not to endocrine cells. Cx50 was cytoplasmic and associated with the cell membrane, not nuclear. Cx50 did not co-localize with Cx46 but it co-localized in the cytoplasm and co-immunoprecipitated with Cx43. Cx46 and Cx50 responses to various physiological and pathological challenges were different, often opposite. Cx46 and Cx43 expression and phosphorylation profiles differed in the anterior pituitary, whereas Cx50 and Cx43 were similar. The data suggest that Cx46 participates to cellular growth and proliferation and that Cx50, together with Cx43, contributes to folliculostellate cell coupling.


Assuntos
Conexinas/metabolismo , Adeno-Hipófise/metabolismo , Animais , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Células Cultivadas , Conexinas/genética , Diabetes Mellitus/metabolismo , Células Endócrinas/metabolismo , Células Epiteliais/metabolismo , Feminino , Lactação/metabolismo , Lisossomos/metabolismo , Masculino , Camundongos , Vison , Obesidade/metabolismo , Orquite/metabolismo , Adeno-Hipófise/citologia , Hormônios Adeno-Hipofisários/metabolismo , Reprodução
13.
Endocr J ; 64(11): 1063-1071, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-28835591

RESUMO

Dexamethasone-induced Ras-related protein 1 (Rasd1) is a member of the Ras superfamily of monomeric G proteins that have a regulatory function in signal transduction. Here we investigated the role of Rasd1 in regulating estrogen-induced gene expression in primary cultures of rat anterior pituitary cells. Rasd1 mRNA expression in anterior pituitary cells decreased after treatment with forskolin or serum and increased after treatment with 17ß-estradiol (E2). Increases in Rasd1 mRNA expression occurred as early as 0.5 h after E2 treatment, peaked at 1 h and were sustained for as long as 96 h. This rapid and profound increase in Rasd1 mRNA expression induced by E2 was also seen in GH4C1 cells, an estrogen receptor-positive somatolactotroph cell line. Among pituitary estrogen-responsive late genes studied, basal mRNA expression of Pim3 and Igf1 genes was decreased by RNA interference-mediated knockdown of Rasd1 expression, whereas basal expression of the Giot1 gene was increased. Moreover, Rasd1 knockdown enhanced stimulation of Pim3 mRNA expression and attenuated inhibition of Fosl1 mRNA expression 24 h after E2 treatment. These changes in mRNA expression were accompanied by enhanced activity of promoters containing CRE, AP-1 and SRE binding sequences. These results suggest that Rasd1 is an estrogen-responsive immediate early gene and modulates E2 induction of at least several late genes in anterior pituitary cells.


Assuntos
Estradiol/farmacologia , Genes Precoces , Hormônios Adeno-Hipofisários/metabolismo , Proteínas ras/fisiologia , Animais , Células Cultivadas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Precoces/efeitos dos fármacos , Genes Precoces/fisiologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transcrição Gênica/efeitos dos fármacos , Proteínas ras/genética
14.
J Neuroendocrinol ; 29(8)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28718206

RESUMO

With the aim of studying delta-like protein 1 (DLK1) with respect to the relationship between adipocyte leptin and adenohypophyseal hormones, we carried out an immunohistochemical study analysing the presence of receptors for these hormones in the pituitary and adipose cells of male wild-type (WT) mice (Dlk1+/+ ) compared to knockout (KO) mice (Dlk1-/- ). The mRNA expression of these molecules was also determined using the reverse transcriptase-polymerase chain reaction. The results obtained showed that, in WT adipose cells, all of the adenohypophyseal hormone receptors were present, with a higher mRNA expression for growth hormone (GH) receptor and thyroid-stimulating hormone (TSH) receptor. Of the total cells in the anterior pituitary lobe, 17.09±0.9% were leptin receptor (LEPR) immunoreactive (-IR), mainly in GH-IR and prolactin (PRL)-IR cells (41.5±3.8%; 13.5±1.7%, respectively). In Dlk1-/- mice, adipocyte cells showed a significant increase in the TSH receptor mRNA expression level. Moreover, the percentage of LEPR-IR GH cells showed a statistically significant increase compared to controls, from 41.5±3.8% to 53.1±4.0%. By contrast, only 3.0±0.6% of LEP-IR anterior pituitary cells were detected in Dlk1 KO mice, as opposed to 6.8±1.1% observed in WT mice. The results suggest that relationships exist between adipocytes and pituitary GH, PRL and TSH cells, in addition to an influence with respect to the synthesis and release of pituitary leptin, particularly in PRL cells.


Assuntos
Tecido Adiposo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Hipófise/metabolismo , Animais , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Hormônios Adeno-Hipofisários/metabolismo , Prolactina/metabolismo , RNA Mensageiro/metabolismo , Receptores para Leptina/metabolismo , Receptores da Somatotropina/metabolismo , Receptores da Tireotropina/metabolismo
15.
Endocrinology ; 158(6): 1849-1858, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28323954

RESUMO

Heterogeneity in homotypic cellular responses is an important feature of many biological systems, and it has been shown to be prominent in most anterior pituitary hormonal cell types. In this study, we analyze heterogeneity in the responses to hypothalamic secretagogues in the corticotroph cell population of adult male rats. Using the genetically encoded calcium indicator GCaMP6s, we determined the intracellular calcium responses of these cells to corticotropin-releasing hormone and arginine-vasopressin. Our experiments revealed marked population heterogeneity in the response to these peptides, in terms of amplitude and dynamics of the responses, as well as the sensitivity to different concentrations and duration of stimuli. However, repeated stimuli to the same cell produced remarkably consistent responses, indicating that these are deterministic on a cell-by-cell level. We also describe similar heterogeneity in the sensitivity of cells to inhibition by corticosterone. In summary, our results highlight a large degree of heterogeneity in the cellular mechanisms that govern corticotroph responses to their physiological stimuli; this could provide a mechanism to extend the dynamic range of the responses at the population level to allow adaptation to different physiological challenges.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Corticosterona/farmacologia , Corticotrofos/efeitos dos fármacos , Corticotrofos/metabolismo , Hormônio Liberador da Corticotropina/farmacologia , Hormônios Adeno-Hipofisários/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Animais , Arginina Vasopressina/metabolismo , Arginina Vasopressina/farmacologia , Sinalização do Cálcio/genética , Células Cultivadas , Hormônio Liberador da Corticotropina/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos
16.
Endocr J ; 63(11): 965-976, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27534814

RESUMO

Non-functioning pituitary adenoma (NFPA) is often associated with hypopituitarism. Diagnosis of hypopituitarism is important because of its poor prognosis and low quality of life. Among hypopituitarism, it is difficult to diagnose secondary adrenocortical insufficiency and GH deficiency without hormone stimulation test. Therefore, the aim of our study was to identify patients with NFPA who require more careful endocrinological examination. We examined the relationship between NFPA size and the prevalence of each hypopituitarism or the response of each anterior pituitary hormone by insulin tolerance test, LHRH test and TRH test. We studied 63 patients with NFPA admitted for evaluation of pituitary function and surgical indication. They were classified three groups by tumor diameter. The prevalence of GH deficiency, male secondary hypogonadism, secondary hypothyroidism and PRL deficiency were higher in the group of larger tumor diameter (p<0.0001, p<0.05, p<0.05 and p<0.05, respectively). However, that of secondary adrenocortical insufficiency only tended to be higher (p=0.07). In the group with small NFPA (less than 20 mm), the prevalence of secondary adrenocortical insufficiency was 38% although those of GH deficiency, male secondary hypogonadism, secondary hypothyroidism and PRL deficiency were 0%, 0% and 8% and 9%, respectively. Anterior pituitary hormone responses except TSH had significantly negative correlation with tumor diameter (ACTH: r=-0.40, GH: r=-0.57, LH: r=-0.69, FSH: r=-0.46, PRL: r=-0.36). The results suggested physicians should proactively suspect GH deficiency, male secondary hypogonadism and secondary hypothyroidism in patients with larger NFPA. On the other hand, adrenocortical function should be examined even in patients with small NFPA.


Assuntos
Adenoma/patologia , Hipopituitarismo/etiologia , Hormônios Adeno-Hipofisários/deficiência , Neoplasias Hipofisárias/patologia , Carga Tumoral , Adenoma/complicações , Adenoma/epidemiologia , Adenoma/metabolismo , Insuficiência Adrenal/epidemiologia , Insuficiência Adrenal/etiologia , Insuficiência Adrenal/patologia , Idoso , Feminino , Hospitalização , Humanos , Hipogonadismo/epidemiologia , Hipogonadismo/etiologia , Hipogonadismo/patologia , Hipopituitarismo/epidemiologia , Hipopituitarismo/metabolismo , Hipopituitarismo/patologia , Masculino , Pessoa de Meia-Idade , Hormônios Adeno-Hipofisários/metabolismo , Neoplasias Hipofisárias/complicações , Neoplasias Hipofisárias/epidemiologia , Neoplasias Hipofisárias/metabolismo , Prevalência
17.
J Neuroendocrinol ; 28(3): 12369, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27020952

RESUMO

Emerging evidence shows that elevated cholesterol levels are detrimental to health. However, it is unclear whether there is an association between cholesterol and the pituitary. We investigated the effects of a high-cholesterol diet on pituitary hormones using in vivo animal studies and an epidemiological study. In the animal experiments, rats were fed a high-cholesterol or control diet for 28 weeks. In rats fed the high-cholesterol diet, serum levels of thyroid-stimulating hormone (TSH; also known as thyrotrophin), luteinising hormone (LH) and follicle-stimulating hormone (FSH) produced by the basophilic cells of the anterior pituitary were elevated in a time-dependent manner. Among these hormones, TSH was the first to undergo a significant change, whereas adrenocorticotrophic hormone (ACTH), another hormone produced by basophilic cells, was not changed significantly. As the duration of cholesterol feeding increased, cholesterol deposition increased gradually in the pituitary. Histologically, basophilic cells, and especially thyrotrophs and gonadotrophs, showed an obvious increase in cell area, as well as a potential increase in their proportion of total pituitary cells. Expression of the ß-subunit of TSH, FSH and LH, which controls hormone specificity and activity, exhibited a corresponding increase. In the epidemiological study, we found a similar elevation of serum TSH, LH and FSH and a decrease in ACTH in patients with hypercholesterolaemia. Significant positive correlations existed between serum total cholesterol and TSH, FSH or LH, even after adjusting for confounding factors. Taken together, the results of the present study suggest that the high-cholesterol diet affected the levels of hormones derived from anterior pituitary basophilic cells. This phenomenon might contribute to the pituitary functional disturbances described in hypercholesterolaemia.


Assuntos
Colesterol na Dieta/farmacologia , Dieta Aterogênica , Adeno-Hipófise/efeitos dos fármacos , Adeno-Hipófise/metabolismo , Hormônios Adeno-Hipofisários/metabolismo , Animais , Células Endócrinas/efeitos dos fármacos , Células Endócrinas/metabolismo , Hormônio Foliculoestimulante/sangue , Hipercolesterolemia/sangue , Hormônio Luteinizante/sangue , Masculino , Ratos , Ratos Sprague-Dawley , Tireotropina/sangue
18.
J Anim Physiol Anim Nutr (Berl) ; 100(3): 448-55, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26335931

RESUMO

The present work delineates redistribution patterns of the hormone-producing cells of the anterior pituitary, after the phase of moulting. Two hundred single comb White Leghorn hens at the end of their first production cycle (Age = 70 week) were purchased from the commercial poultry farm and were induced to moult by high-dietary zinc (3 g/kg feed/day) after 1 week of acclimatization, at the experimental research station, Department of Physiology and Pharmacology, University of Agriculture, Faisalabad. The moulted birds were equally (n = 50) and randomly allocated to their respective groups as G1 (control; CP (Crude protein) 16%, no supplement), G2 (CP18%, no other supplement), G3 (CP16%, symbiotic at does rate of 85 mg/l in drinking water daily) and G4 (CP16%, probiotic at dose rate of 85 mg/l in drinking water daily). Ten birds were slaughtered in each group at 5% and at peak of post-moult production stage to collect their pituitary glands. An earlier post-moult production recovery, sustained and lengthier production span was seen in the G2 as compared to all other groups. The lowest production and an earlier production decline were seen in G1. The cell diameter and area of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) gonadotroph increased (p ≤ 0.01) in G2 and G3 as compared to G1. The FSH gonadotroph nucleus diameter and area did increase (p ≤ 0.01) in G2 and G3, while LH gonadotroph nucleus diameter and area decreased (p ≤ 0.01) in G2 and G3 as compared to G1. The increased FSH and LH gonadotroph diameter in protein and symbiotic supplemented birds is accountable for the increased egg production in these groups.


Assuntos
Galinhas/fisiologia , Proteínas na Dieta/administração & dosagem , Gonadotropinas/metabolismo , Muda , Hormônios Adeno-Hipofisários/metabolismo , Probióticos , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Feminino , Hormônios Adeno-Hipofisários/imunologia
19.
Reprod Biol ; 15(4): 247-56, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26679166

RESUMO

Our objective was to determine the effects of prostaglandin F2α (PGF2α) and withdrawal of luteotropic stimulants (forskolin or hCG) on expression of chemokines and prostaglandin-endoperoxide synthase 2 (PTGS2) in luteinized human granulosa cells. Human granulosa cells were collected from 12 women undergoing oocyte retrieval and were luteinized in vitro with forskolin or hCG. In first experiment, granulosa-lutein cells were treated with PGF2α, the primary luteolytic hormone in most species. In second experiment, granulosa cells that had been luteinized for 8 d had luteotropins withdrawn for 1, 2, or 3 d. Treatment with PGF2α induced mRNA for chemokine (c-x-c motif) ligand 2 (CXCL2) and CXC ligand 8 (CXCL8; also known as interleukin-8) in granulosa cells luteinized for 8 d but not in cells that were only luteinized for 2 d. Similarly, luteinization of human granulosa cells for 8 d with forskolin or hCG followed by withdrawal of luteotropic stimulants, not only decreased P4 production, but also increased mRNA concentrations for CXCL8, CXCL-2 (after forskolin withdrawal), and PTGS2. These results provide evidence for two key steps in differentiation of luteolytic capability in human granulosa cells. During 8 d of luteinization, granulosa cells acquire the ability to respond to luteolytic factors, such as PGF2α, with induction of genes involved in immune function and PG synthesis. Finally, a decline in luteotropic stimuli triggers similar pathways leading to induction of PTGS2 and possibly intraluteal PGF2α production, chemokine expression, leukocyte infiltration and activation, and ultimately luteal regression.


Assuntos
Quimiocinas/biossíntese , Corpo Lúteo/fisiologia , Dinoprosta/biossíntese , Luteólise/fisiologia , Hormônios Adeno-Hipofisários/metabolismo , Prostaglandinas/biossíntese , Células Cultivadas , Quimiocina CXCL2/genética , Quimiocina CXCL2/metabolismo , Gonadotropina Coriônica/farmacologia , Colforsina/farmacologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Feminino , Regulação da Expressão Gênica/fisiologia , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Hormônios Adeno-Hipofisários/genética , Progesterona/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
Endocrinology ; 156(8): 2934-48, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25965960

RESUMO

Dopaminergic (DA) neurons located in the preoptico-hypothalamic region of the brain exert a major neuroendocrine control on reproduction, growth, and homeostasis by regulating the secretion of anterior pituitary (or adenohypophysis) hormones. Here, using a retrograde tract tracing experiment, we identified the neurons playing this role in the zebrafish. The DA cells projecting directly to the anterior pituitary are localized in the most anteroventral part of the preoptic area, and we named them preoptico-hypophyseal DA (POHDA) neurons. During development, these neurons do not appear before 72 hours postfertilization (hpf) and are the last dopaminergic cell group to differentiate. We found that the number of neurons in this cell population continues to increase throughout life proportionally to the growth of the fish. 5-Bromo-2'-deoxyuridine incorporation analysis suggested that this increase is due to continuous neurogenesis and not due to a phenotypic change in already-existing neurons. Finally, expression profiles of several genes (foxg1a, dlx2a, and nr4a2a/b) were different in the POHDA compared with the adjacent suprachiasmatic DA neurons, suggesting that POHDA neurons develop as a distinct DA cell population in the preoptic area. This study offers some insights into the regional identity of the preoptic area and provides the first bases for future functional genetic studies on the development of DA neurons controlling anterior pituitary functions.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Neurogênese/fisiologia , Adeno-Hipófise/fisiologia , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/crescimento & desenvolvimento , Animais , Animais Geneticamente Modificados , Neurônios Dopaminérgicos/citologia , Embrião não Mamífero , Feminino , Sistemas Neurossecretores/citologia , Sistemas Neurossecretores/crescimento & desenvolvimento , Adeno-Hipófise/embriologia , Adeno-Hipófise/crescimento & desenvolvimento , Hormônios Adeno-Hipofisários/metabolismo , Área Pré-Óptica/embriologia , Área Pré-Óptica/crescimento & desenvolvimento , Peixe-Zebra/embriologia , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...